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Supersonic Transport Grid Generation,
Validation, and Optimization

Philip G. Aaronson

Introduction:

The ever present demand for reduced flight times has renewed interest in High

Speed Civil Transports (HSCT). The need for an HSCT becomes especially appar-

ent when the long distance, over-sea, high growth Pacific rim routes are considered.

Crucial to any successful HSCT design are minimal environmental impact and eco-

nomic viability. Vital is the transport's aerodynamic efficiency, ultimately effecting

both the environmental impact and the operating cost. Optimization, including nu-

merical optimization, coupled with the use of computational fluid dynamics (CFD)

technology, has and will offer a significant improvement beyond traditional methods.

Further, a key environmental factor is the sonic boom signature. CFD will play a

crucial role in shaping and minimizing the aircraft's sonic boom in order to reduce

the perceived loudness that inhabitants experience beneath the flight path.

1993-January 31,1995:

Grid generation has been the focus of this year's efforts. A series of surface grids

being generated around a generic nacelle-diverter combination, McDonnell Douglas'

Wing 4, and Wing 5 as well as Boeing's Reference H and Configuration 1122.

A generic nacelle-diverter combination mounted on a flat plate was tested in the

Langley Research Center Unitary Plan Wind Tunnel in January of 1994 [UPWT Test

1784]. This presented a chance to validate our CFD codes against experimental data

and compare results in the difficult nacelle-diverter region. Several sets of grids were

generated using ICEMCFD, starting from the mechanical drawings used to fabricate

the original wind tunnel model. These included a series of surface grids to be run

by Scott Lawrence with his UPS code, as well as a single surface grid and an overset

grid set to be run with OVERFLOW.

A series of surface grids on McDonnell Douglas' Wing 4 and Wing 5 geometry

was generated using ICEMCFD. A two zone topology which I designed was selected

as the best means of gridding up the wing-body geometry for the UPS code. This

approach minimizes the number of grid points crossing the wing/fuselage juncture.





IGES files obtained from McDonnell Douglas defined the geometry. Wing 4 and

Wing 5 was then run by Scott Lawrence using the UPS and Stuff codes. See Fig. 1

Reference H has been an ongoing project with Steve Ryan and myself. A further

refined single nacelle, Euler test case was completed. This included the newly defined

aft end of the diverter which was obtained from Boeing. Results of the Euler analysis

were published as, Philip G. Aaronson and James S. Ryan, "OVERFLOW Code Val-

idation Study for the Boeing Reference H," Proceedings of the First NASA/Industry

High Speed Research Propulsion/Airframe Integration Workshop, Cleveland, OH,

October 26-27, 1993. A copy of the paper is not included in the appendix due to the

competitively sensitive nature of the material. Continued work with the Reference

H has resulted in several versions of a complete Navier-Stokes grid about the entire

geometry. This includes both nacelles and diverters.

Two versions of a grid about the Boeing configuration 1122 were completed for

Samson Cheung. The 1122 configuration proved an especially challenging geometry

to create a grid on due to the low wing nature of the aircraft. The wing in places,

essentially defined the lower surface of the fuselage making the intersection between

the fuselage and wing difficult to accurately capture. See Fig. 2.

Figure 1. Wing 4 geometry detailing the wing-fuselage juncture.
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1992-1993:

Optimization of the Haack-Adams body was the highlightof the research efforts

during this one year period. In addition training on the CAD and grid generation

system ICEMCFD was completed. Using ICEM, grids were generated about the

Boeing 180"{ and Model3 geometries.

The Haack-Adams body is a classic linear theory, minimum drag shape. This

we used as the initial condition for the optimizer NPSOL in conjunction with the

flow solvers UPS and OVERFLOW. An extension of the Fourier series which linear

theory analytically defined the Haack-Adams body was used to perturb the shape.

The objective function used in this case was the drag of the body. With NPSOL, ap-

proximately a 4% reduction in drag was obtained using both Euler and Navier-Stokes

flow solutions to determine the objective function. Factors effecting the optimization

process such as number of design variables, Mach number, constraints, etc. were ex-

tensively discussed. A copy of the paper which has been published by The Journal

of Aircraft, Vol.32, January-February 1995 is included in Appendix A.

1991-1992:

This period of research was focused primarily with familiarization with CNS,

NPSOL and the other CFD, and optimization tools available at Ames. To achieve

that end I ran a series of test problems, a flat plate, wedge, and symmetrical wing.

The fiat plate problem was the first project completed upon entering Ames and

thus it served the double purpose of familiarizing myself with CNS and running

needed test cases against which newly developed codes could be benchmarked. A

copy of the technical note which was distributed throughout the group can be found

in the '92 annual report and it details all of the initial work completed on the fiat

plate problem. Further, turbulent flat plate cases were run for comparisons with the

then newly developed parallel OVERFLOW code.

The wedge problem was an attempt to model one of the experiments by Holden

and Moselle and to compare against UPS's solution to the same problem. Unfortu-

nately UPS never achieved a good agreement with the experimental data, and the

solutions run by CNS (F3D) had an even worse agreement.

Within the laminar flow control group, Joseph Garcia is doing a study on the

transition location for various planform shapes. Laminar viscous solutions were

needed around each planform in order to then generate the transition location. This





planform was exactly what was needed for testing of new boundary conditions in

CNS and as a test case for a CNS/NPSOL optimizer combination.

Figure 2. Boeing Configuration 1122 grid showing detail of the wing-fuselage
juncture.
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Abstract

The increasing performance and environmental

demands required of an aircraft necessitates the de-

velopment of a set of design tools capable of meeting

these challenges. This paper describes a methodol-

ogy behind coupling a fast, parabolized Navier-Stokes

flow solver to a nonlinear constraint optimizer. The

design parameters, constraints, grid refinement, be-

havior of the optimizer, and flow physics related to
the CFD calculations are discussed. A theoretical

minimum-drag body of revolution is chosen as an ini-

tial configuration for the optimization process. For

the slender axisymmetric body, a calculation includ-

ing nonlinear and viscous effects produces a different

minimum drag geometry than linear theory and re-

sults in a drag reduction of approximately 4%. This

design tool can be used in aerodynamic optimization

and sonic boom minimization of supersonic aircraft.

The High Speed Civil Transport is a prime example.

Introduction

The need for computational fluid dynamics (CFD)

in aerodynamic optimization is highlighted as the

supercomputer plays an increasing role in aerody-

namic research. One of NASA's research thrusts, the

High Speed Research Program (HSRP), defines chal-

lenges in sonic boom, and aerodynamic optimization.

The primary focus is the High Speed Civil Transport

(HSCT), 1 which is the next generation supersonic

passenger aircraft. In this paper, the techniques and

tools of aerodynamic optimization will be described.

A theoretical minimum drag body of revolution is

* Research Scientist, Member AIAA.
** Junior Research Scientist.

t Assistant Chief, Computational Aerosciences
Branch. Senior Member AIAA.

Copyright (_) 1993 by the American Institute

of Aeronautics and Astronautics, Inc. All rights
reserved.

chosen as the baseline configuration for the optimiza-

tion process.

A shape perturbation method is chosen for opti-
mization in the present study. A similar method was

used extensively by Haney, Johnson, and Hicks 2 to

optimize transonic wings. In their method a poten-

tial flow solver was coupled with a feasible direction

algorithm. The design variables were the scalar co-

efficients of a finite set of chosen sine and exponen-
tial functions. These functions were then added to

the upper surface of the wing, perturbing the wing's

shape. Cosentino and Hoist 3 coupled the TWING

and QNM codes and performed a spline fit across

control points located on the upper surface of the

wing. In a two-dimensional analysis, Vanderplaats

and Hicks 4 coupled a potential code with the con-

straint optimizer CONMIN. Polynomial coefficients

were used as design functions; lift and wave drag were

used as test case objective functions. Aero-function

shapes were developed through the use of an inverse

optimization process by Aidala, Davis, and Mason. s

These were used with a potential flow code coupled

to CONMIN. Each shape was designed to control an

aspect of the pressure distribution and then employed

as a design variable in the optimization process. The

present method takes advantage of a Fourier sine se-

ries that defines the original body. The Fourier co-

efficients are convenient, physically relevant design
variables.

As a test case, the Haack-Adams 6'7's (H-A) the-

oretical minimum drag body of revolution is chosen.

The tt-A body is selected in this study because it is

a classic aerodynamics problem for which validating

experimental data 9 are available. Because of its sim-

ple geometry, running large numbers of permutations

is still relatively inexpensive. And since the geome-

try ends in a finite base, it is particularly well suited

for space-marching codes. By including viscous and

other nonlinear effects it is hoped that a new opti-

mum may be located.

In the following sections the H-A body is first
derived and then the CFD flow solver is validated





onthegeometryovera rangeof Machnumbersand
grid densities.Thentheoptimizationprocedureis
.described,includingoptimizerbehavior,designvari-
ablestudies,andtheconstraintsused.Finally,sev-
eralrunsof theoptimizer/flowsolverarecompleted
ontheH-Abodyandtheresultsarepresented.

U, PoD
x

Figure 1. A body of revolution.

Haack-Adams Body

The H-A body is a classic aerodynamic shape

derived from supersonic slender body theory. This

shape minimizes the wave drag subject to constraints

on the volume and base area. The H-A body was

chosen as an optimization test case for its database

of experimental data which can be used to verify the

CFD code. The simplicity of the geometry makes

grid generation relatively easy and robust. The finite

base of the H-A body facilitates correlation with an

experimental models which have an attached sting,

and simplifies modeling with space-marching codes.

Slender-body theory, which was used in deriving

the H-A body shapes, is a special case of smM1 pertur-

bation potential-flow theory with the additional re-

striction that the product rv/-M-_ - 1 is much smaller

than x, where r is radius of the body at some stream-

wise distance x along the axis of the body, and Met is

the freestream Mach number. The theory described

in this section can be found in most aerodynamic

textbooks, l°,n but is reviewed here for convenience.

Consider supersonic flow of velocity U and den-

sity p_o over a body of revolution of length L as shown

in Fig. 1. The velocity potential due to a linear source

distribution of strength Uf(x) is

The derivative of the cross-sectional area, A', can be

approximated by f. Integrating f produces,

A(O) = / f(O)dS
f

2 =

[a,, sin(nO)][sin O]dO

A(O) = a,(_ -- O + - sin 20) + o,:_- sin30+

2 3

(i)

Slender-body theory gives the formula of wave drag,

_Poo U _L_ _D_. - -- na (2)

8
n=l

Equations (1) and (2) show that the cross-sectional

area and the wave drag are independent of the Mach

number. The H-A body is defined by the body shape

that minimizes D_ subject to the following condi-
tions:

C1 _ the area at the base A(L) = Ab,_s_ is
fixed and non-zero

C2 - the slope of the body is zero at the
dAbase, o

C3 - the finess ratio is fixed.

It is easy to check that Eq. (1) satisfies C2. The

remaining two conditions C1 and C3 determine the

values of al and c_2. In order for a body to produce

minimum drag, Eq. (2) suggests that an = 0 for

n > 3. Condition C1 gives

x--_r

1 / J(,_)

o

d_

where/3 = _- 1 and x = L(1 + cos0)/2.

pressing f as a Fourier sine series,

C_D

f(O) = L E a. sin(n0)

n=l

4Aba,e

a x -- (3)
L2w

Ex-

and C3 gives X,na_, the location of the maximum

thickness, and therefore,

c_2- , O,.o= = cos-_ 1 (4)
2 cos 0,_._ \ L
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Figure 2. Diagram of optimization proce-
dure.

Optimization Procedure

The optimizer first generates a baseline objective

function from the initial values of the design variables

supplied as input. The optimizer then perturbs each

of the design variables in order to locate a search

direction. During each perturbation, a surface grid

and computational grid are generated. The flow is

then solved on the computational grid and from this,

the objective function is produced. The optimizer

continues to perturb and search until a set of design
variables, and thus a new body shape, is obtained

with a local minimum objective function (see Fig. 2).
Both linear and nonlinear constraints can be added

to the design variables.

Design Variables

Perturbations are performed through the use of

design variables that have a direct influence on the

objective function. The design variables used here

were inspired by the original Fourier sine series used

in the derivation of the H-A body. Equation (1) can

be rewritten using Eqs. (3) and (4) as

2 f 1 4 sinsr _ A_=.= (r -- 0 + - sin 20) + 7* O+

r 2 xAra._ [ 2 3
max

_-_ 7_* si )0 sin(m__+ 2)0_ (5)

m=_ m+2 ]

where 7m = arn/ax for m = 2,3,...,00. r,na_ and

Ab_,_/A,_a_ are known. According to linear theory,

the ")'m are set to zero. However, since nonlinear ef-

fects are included in the CFD analysis, a finite num-

ber of these coefficients (m = 2, 3,.., N) were chosen

as the design variables. Therefore, the optimized con-

figuration will also be defined by Eq. (5).

Constraints

It is important to check that this optimal con-

figuration satisfies the three conditions (C1, C2, and

C3) of the H-A body. Equation (5) satisfies C1 when

evaluated at 0 = 0 and (dAIdz = 7rd(r2)ldx).

dA dO 2Aba,e f 2sin_0 4sin2 OcosO

- _ + 7a +dO dz L A,,,.= sin 8 sin 0

(6)
ra=2

Equation (6) is zero when evaluated at 0 = 0. Note

that the terms inside the summation sign are zero

by L'H6pital's Rule, thus, C2 is satisfied. Slender-

body theory and condition C3 requires the tt-A body

to satisfy (dA/dx)l_=_,,._ = 0. In the optimization

process, the location of the maximum was allowed to

change in such a way that -1 < (dA/dz)lz ..... <_ 1,
that is

--2sin 2 O,_=_ + 43', sin s 0_a_ cos O,_°_+

N

This constraint limits the amount Xma_: (or 0m_)
could shift in order to prevent excessive skewness

in the grid. On the original H-A body x,_ was

fixed. An additional requirement is needed to ensure

that the radius of the optimal body (Eq. 5) is always
greater than or equal to zero; that is,

1

(Tr -- 0 + -sin20)+T14sin30+

2 3

m+2 /

for all 0 > 0 >_ 7r. Equations (7) and (8) set the

relationships among the 7% and are treated as con-

straints for the optimization problem. It should be

noted that due to the Fourier nature of the shape

functions, the volume of the optimal body (Eq. 5) is

the same as that of the original H-A body.

Flow Solver

The implemented CFD flow solver is the 3-D

parabolized Navier-Stokes code, UPS3D. n This is a

space-marching code that calculates steady-state vis-

cous or inviscid solutions to supersonic flows. A conic
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Figure 3. Schematic marching grid of of the

Haack-Adams body.
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Figure 4. Wave drag comparison over a
range of Mach numbers, L = 7.

2R,n_

approximation is made for the initial marching plane.

This code is further supported by a hyperbolic grid

generation scheme 13 that is sufficiently fast and ro-

bust to operate within an automated optimization

environment. In this study, both viscous and inviscid

supersonic calculations are employed. From these so-

lutions, the drag coefficient Co is calculated by inte-

grating pressure and skin friction (if applicable) over

the surface of the body. The UPS3D code uses a step

size of 0.1% of the body length (L) on a grid of 21

points in the circumferential direction and 50 points

in the body-normal direction. The grid points are

clustered near the body surface (see Fig. 3).

Objective Function

Five design variables, namely, 72,7a, ..., 76 of Eq.

(5) are used in the majority of the remainder of this
study. At each step, the optimizer alters the 7 values

and a new shape is defined. A new computational

grid is then created and UPS3D calculates the flow
over this new geometry. The wave drag coefficient

(Cow) is determined by numerical integration of the

pressure coefficient (Cp) over the body

CD = // C, dS(x)= ] 2xrC, dr

o

If skin friction as well as pressure is included in the

integration then total drag is calculated.

Optimizer

The optimizer, NPSOL, 14 is a collection of For-

tran subroutines designed to solve the nonlinear pro-

gramming problem:

minimize F(z)

subject to: l_< Az _<u
c(x

where F(z) is the objective function, z is a vector
of length n that contains the design variables, c(x)
contains the nonlinear constraint functions, and A is

the linear constraint matrix. Note that u and l, the

upper and lower bounds, are vectors and thus are

specified for each variable and constraint.

NPSOL uses a sequential quadratic programming

algorithm to look for the minimum of F(x). Within

each iteration, the search direction is the solution of

a quadratic programming (QP) algorithm. Each QP

subproblem is solved by a quasi-Newton approxima-

tion. The optimizer stops when it finds a local mini-

mum of F(x).
The user needs to define F(z), A, e(z) and the

bounds for each, as well as an initial estimate of the

solution. An important consideration is the difference

interval used in the finite difference approximation

of the gradient. NPSOL has an option to calculate

the difference interval; however, this involves a large
number of calls to the flow solver, which is imprac-

tical. The difference interval is specified as an input

throughout this study.

Results and Discussion

Test Cases

Flow Solver As a validation test ease, the UPS3D

code run in inviscid mode is compared against the

experimental data. A review of Fig. 3 illustrates a

typical grid used by UPS3D, which shows the sur-
face as well as a plane normal to the body. In the

experimental study, 9 the H-A body had a length L

of 36" with a fineness ratio L/2rma_ of 7. The loca-

tion of maximum thickness was z,,_ = 21" (0ma_ =

cos-l(1)), and Ab,,JA,_,_ = 0.532.
The UPS3D code was tested over a range of su-

personic Mach numbers and compares well with char-

acteristic theory and experimental data (see Fig. 4).





Notethevariationof wavedragwithMachnumber
predictedbyboth thecharacteristictheoryandin-
viscidCFDsolutions.Slenderbodytheorypredicts
novariationofdragwithMachnumber(seeEq.2).
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Figure 5. Constrained optimization paths

for a difference interval of A9 = 0.01 (solid

line) and A7 = 0.005 (dashed line).

Optimizer As a test case for the optimizer, NPSOL

was run using the analytic slender-body formula for

drag (Eq. 2) as the objective function. For this

test case, the c_,,, (n = 1, 2,...,5) coefficients were

the design variables and the constraints C1 through

C3 were implemented. The design variables were set
to arbitrary non-zero values. Within six iterations

the optimizer minimized Co,, by locating ol and as

at the slender-body predicted values, and setting a3
through a5 to zero.

In order to visualize the process of optimization,

a two-design-variable (7_ and 73) case is considered.
Figure 5 is a contour plot of the wave drag coefficient

with respect to 7_ and 73. The dots in the figure are

iterative points in the optimization. Linked together,

they form a search path. The thickest solid line satis-

fies the equation (dA/dz)l=_=_,,,o; = O, and the shaded

area satisfies the inequality-1 <(dA/dx)l_:=_,,,,= <
1, (Eq. (7)), which is the constraint used. The thinner

solid line and the dashed line are search paths used

by NPSOL with difference intervals of A7 = 0.01

and A7 = 0.005, respectively. The larger difference

interval calculates a less accurate gradient and thus

locates a minimum more slowly than the smaller dif-

ference interval. However, there are two local minima

in this design space along the constraint boundary.

The larger difference interval found the better of the

two minima. The smaller difference interval stopped

before it found that minimum. This is not always the

case, as a larger difference interval could miss a local

minimum by "stepping" over it entirely.

0.8
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CD w 0.4. / ......'"" Body Shape -0.08
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0.2- /" ... --ori_l "0.04 r
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Figure 6. Inviscid optimization with five
design variables. Moo = 2.5, L 7.
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Figure 7. Wave drag comparison between

the original H-A body and the H-A body

optimized at Moo = 2.5, over a range of
Mach numbers, L:_R,_,--------T= 7.

Inviscid Optimization

The inviscid optimization process gave the re-

sult shown in Fig. 6 for a freestream Maeh number of

2.5 and an angle of attack of zero degrees. The sec-

tional wave drag coefficient is plotted along with the

radius of the original and optimized shapes. Dur-

ing optimization the volume of the forebody is re-

duced in order to improve the sectional wave drag in

this region. The improvement over the original H-A
body is reduced aft of the maximum cross-sectionM
area because of an increase in volume that occurred

satisfying the constraints (C1 and C2). Overall, the
wave drag of the Haack-Adams body was reduced

by 5%. Although the optimized body was designed

at Mach 2.5, Fig. 7 shows that the same optimized





bodygiveslowerdragthan theH-Abodyat other
Machnumbers.UsingA 7 = 0.01, 48 new body

shapes were generated and analyzed to reach this re-

sult. The whole process took approximately 2.5 CPU

hours on the Cray-YMP. Each flow solution calcu-

lated by UPS3D uses 160 sec., with an additional 1.3

sec. in grid generation.

cD

0.10

0.08-

0.06-

0.04-

0.02-

0.00,

Sectional Drag

Body Shape - 0.08

"_ - 0.06

- 0.04 r

- 0.02

3.00
o.o 0:2 0.4 0:6 0:8 1.0

X/L

Figure 8. Navier-Stokes optimization with

five design variables, Moo = 2.5, L 7,

Re = 9 x 106.
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Figure 9. Total drag comparison between

the original H-A body and the H-A body

optimized with 5 design variables at Moo =

2.5, over a range of Mach numbers, c

7,Re=9x 106 .

Viscous Optimization

The same design procedure was also performed

with viscosity taken into account. The result is shown

in Fig. 8. The optimizer took much the same strat-

egy as the inviscid case in that the nose of the body

was reduced, while a penalty was paid at the rear

of the body. The viscous drag results include both

wave and skin friction drag, so while the actual drag

reduction is comparable to the inviscid optimization,

the improvement in this case is 4%. Figure 9 shows

that the same body gives lower drag than the original

at other Mach numbers. This optimization process

with A 7 = 0.01 took about 3.5 CPU hours total on

the Cray-YMP and employed 40 flow solutions. Each
solution took UPS3D 320 sec with an additional 1.3

sec utilized in grid generation. Table 1 gives the val-

ues of the design variables for the inviscid and viscous

optimization processes.

Haack-Adams Body
Moo = 2.5

72 73 74 75 76
Inviscid 0.853 0.673 0.495 0.420 0.0846

Viscous 0.679 0.598 0.353 0.264 0.01875

Table 1. Optimized 7 values.

Off-Design Performance

The effects ofoff-design angle of attack and Rey-

nolds number on the performance of the new, opti-

mized shape were also investigated. For the body

that was optimized at zero degree angle of attack,

the effects of nonzero angles of attack are shown in

Fig. 10. As c_ increases, the reduction of drag versus

the original decreases slightly.

The lower half of Fig. 11 indicates the radial dis-

tribution results of three optimization processes at.

differing Reynolds numbers. The solid line is the

original H-A body, the dashed line is the body op-
timized at a Reynolds number of 10 6, and the dotted

line is the body optimized at a Reynolds number of

10 5 . The sectional total drag coefficient of these three

configurations calculated at a Reynolds number of

0.105

0.100

0.O95

cD 0.090

0.085

0.080

0.07
-1

,....--'"'_ Legend
o.......... " _ original

-_. optimized

6 i _ _

a (degrees)

Figure 10. Total drag comparison between

the original H-A body and the H-A body

optimized with 5 design variables at Moo =
L __

2.5 and a = 0, over a range of a, _ - 7,
Re = 9 x 10%





106isshownin theupperhalfofthefigure.Thelower
Reynoldsnumbercase,whichfeaturesthickerbound-
arylayers,andhencegreaterflowdisplacement,shows
thelargestperturbationin geometryfromtheH-A
body.
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Figure 11. Total drag comparison between

the original and optimized H-A bodies with

five design variables at Moo = 2.5 and o =
0, for Re= 106, and Re= 105, computed at
Re= 106 L 7.
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Figure 12. Relationship between the size of
the computational grid and the bow shock.

Grid Refinement

A calculation performed on a coarse grid will,

in general, contain a larger numerical error than one

performed on a fine grid. However, the coarser grid

will, in most cases, run significantly faster. It is desir-

able to reduce the computer time by using the coars-

est grid possible that will still yield a physically ac-

curate result. The key to running an optimizer/flow

solver efficiently is to choose a sufficiently coarse grid
that the cumulative CPU time does not become ex-

cessive, yet a fine enough grid to locate a physically

valid optimum.

In this grid-refinement study, an optimization

problem at Mach 2.5 and zero-degree angle of at-

tack was considered. The computational grid had 21

points in the circumferential direction and the step
size of the UPS3D code was taken to be 0.1% of the

body length. The grid resolution in the circumfer-

ential direction and the step size were fine enough

to be kept fixed; only the number of grid points (P)
in the normM direction was altered. The distance

between the first grid point (in the normal direc-

tion) and the surface grid is less than or equal to

s = 0.5(h/P), where h, given by L tan(C), is the ver-
tical distance from the end of the body to the outer

grid (see Fig. 12). Due to grid effects, the calcu-

lated bow shock position of the H-A body differed

with grid density until the grid was dense enough to

resolve the physical shock location. For each compu-

tational grid, the angle ¢ was chosen so that the bow

shock was as close as possible to the outer bound-

ary. Table 2 gives the values of¢ and s with different

computational grids.

Grid Points ¢ Spacing

(P) (degree) (s/L)
10 50 0.060

20 42 0.025

30 38 0.013

40 36 0.009

50 32 0.006

60 31 0.005

70 30 0.0O4

95 3O 0.003

Table 2. Normal grid points vs. shock location.

The behavior of the flow solution and optimiza-

tion results on the various grids are analyzed to char-

acterize the errors arising from grid density. For clar-

ification, the following definitions are introduced:

D(P) - Co calculated on a P-point

H-A grid.

D(oo) -- CD calculated on an asymptotic

H-A grid (approximated by 95

points).

D'_(P) - Co calculated on a P-point grid
whose surface shape is obtained

in an optimization process on an

m-point grid.

ADP(P) =_ lOP(P)- Doo(oo)[ the

approximate drag reduction of a

new design which was obtained by

the optimization process on a

P-point grid.





ADP(oo) = [DP(oo) - D°°(o_)l the actual drag
reduction of the new design which

was obtained by the optimization

process on a P-point grid.

The errors due to grid density in the CFD compu-

tations of the H-A body and the optimized design

are given by [D(P) - D(oo)l and [DR(p) - DP(_)I,

respectively. Both curves are plotted in Fig. 13 and

show a roughly exponential decay in error due to grid

density. Fig. 14 reveals the grid effect in the optimiza-

tion process and the CFD calculations. The dashed

curve is the error due to grid density in the opti-

mization process, given by ADP(P). The solid curve

is the error due to grid density in optimization and

the CFD calculation, given by ADP(oc). This figure

indicates that the optimization process does not re-

quire an overly fine grid in order to locate a physical

optimum.
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Figure 13. Comparison of the error due

to grid density (normal direction) of the

original body vs. the modified body. The

modified body has been optimized at each

of the normal point grids.
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Figure 14. The effects of the number of
grid points in the normal direction on the

optimization process.

The grid used in the optimization process still

has to be fine enough to capture the flow proper-

ties and relevant physics in order to obtain a grid-

independent optimum. For example, if the grid with

P = 30 is used, the computed bow-shock is too far

away from the exact location, and thus the opti-

mized result has an understandably large error. If

the grid with P = 50 is used, the flow physics is

much more realistically approximated, and the opti-

mized result has a much smaller error (compare the

error at L = 50 in Fig. 14).

Design Variables

As the number of design variables increases, so

do the degrees of freedom of the optimization pro-

tess. Often the larger the number of design vari-

ables in the optimization process, the larger the re-

duction in drag. Figure 15 displays the optimized

Co_,, from inviscid flow solutions with Moo = 2.5

under different numbers of design variables. Each

square in tile figure represents the drag coefficient

obtained from the optimization process with an ini-

tial guess of 7i =.0, i = 1...N. Thus as a baseline,

the original H-A body is employed. Each diamond

represents an initial guess of 7i = 0.1, i = 1...N.

For the cases with three and six design variables, the

optimized Cow does not quite follow the expected

reduction in CD_. This is due to a local minimum

around the baseline H-A body for those sets of design

variables. By adjusting the initial guess the expected
result is obtained.
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Figure 15. The effects of number of design
variables and their initial values on the op-

timized wave drag. M_ = 2.5, 2-h--_-_--7.r _

Conclusions

An aerodynamic optimization procedure has been

developed that uses CFD to evaluate aerodynamic

performance metrics, and numerical optimization to





developimproveddesigns.Thepresentimplementa-
tionusesaparabolizedNavier-Stokessolverforaero-
dynamicanalysisof viscousor inviscidsupersonic
flows.Designvariablesandobjectivefunctionsare
user-specified,andtheoptimizationprocessis fully
automated.

To validate and evaluate the new capability, a

minimum-drag body of revolution was used as a test

case. The flow solver was first validated with exper-
imental data and analytical results for the baseline

configuration. Then, a series of optimization prob-

lems were performed that tested the accuracy and ef-

ficiency of the process. When slender body theory is

used for the aerodynamic analysis, the optimizer pro-

duces a design identical to the theoretical minimum-

drag shape. However, using the Euler or Navier-

Stokes equations to model the flow produces a slightly

different design that has up to 5% lower drag than

the original minimum-drag body. Although the test
configuration was simple, the results demonstrate the

opportunity for significant drag reduction on more

complex configurations as well, such as wing-bodies.

Equally important, the drag improvement seen at the

design condition was demonstrated at off-design con-
ditions.

Using CFD for aerodynamic optimization is a

computationally expensive option. This expense can

be partially offset by using coarse grids, as long as the

errors associated with grid resolution do not invali-

date the flow solution. In this study, it was found that

valid optimization results could be obtained using

grids with about half as many points as were required

for grid-independent flow solutions. The interrelation

of the optimizer and the flow solver is dependent on

the design variables, objective functions and physical

flow features, though, so this observation may not be

general to other optimization problems.

The selection of design variables has a large im-

pact on the computational expense of the optimiza-

tion problem as well. The design variables map out

the design space in which the optimizer operates. For

rapid, robust optimization, this space should define

an easily identifiable minimum in the objective func-

tion. In this case, the Fourier series coefficients pro-

vided a compact definition of the design that clearly
demonstrated this attribute.

In summary, the results have shown that aerody-

namic optimization using CFD is a practical technol-

ogy for well posed, moderately sized problems. This

capability is currently being applied to the design of

supersonic aircraft configurations. The modularity

of this approach makes it straightforward to include

other disciplines in the optimization process as well,

such as structural deformations and propulsion sys-
tem effects.
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